21
Views
17
CrossRef citations to date
0
Altmetric
Original Articles

Insight into Signal Transduction: Structural Alterations in Transmembrane Helices Probed by Multi-1 ns Molecular Dynamics Simulations

, &
Pages 555-572 | Received 10 Oct 1997, Published online: 21 May 2012
 

Abstract

The hypothesis of structural alteration in transmembrane helices for signal transduction process is viewed by molecular dynamics simulation techniques. For the c-erbB-2 transmembrane domain involved in oncogenicity, the occurrence of conformational changes has been previously described as transition from the α to π helix. This dynamical feature is thoroughly analyzed for the wild phenotype and oncogenic sequences from a series of 18 simulations carried out on one nanosecond time scale. We show that these structural events do not depend upon the conditions of simulations like force field or starting helix coordinates. We demonstrate that the oncogenic mutations Val659 Glu, Gin and Asp do not prevent the transition. Furthermore, we show that β branched residues, in conjunction with Gly residues in the c-erbB-2 sequence, act as destabilizers for the α helix structure, π deformations are tightly related to other local structural motifs found in soluble and membrane proteins. These structural alterations are discussed in term of structure-activity relationships for the c-erbB-2 activating mechanism mediated by transmembrane domain dimerization.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.