13
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

A Study of the Hydration of Deoxydinucleoside Monophosphates Containing Thymine, Uracil and Its 5-Halogen Derivatives: Monte Carlo Simulation

, , &
Pages 1107-1117 | Received 04 Jan 1999, Published online: 21 May 2012
 

Abstract

An extensive Monte Carlo simulation of hydration of various conformations of the dinucleoside monophosphates (DNP), containing thymine, uracil and its 5-halogen derivatives has been performed. An anti-anti conformation is the most energetically stable one for each of the DNPs. In the majority of cases the energy preference is determined by water-water interaction. For other dimers conformational energy is the most important factor, or both the factors are of nearly equal importance. The introduction of the methyl group into the 5-position of uracil ring most noticeably influences the conformational energy and leads to the decrease of its stabilizing contribution to the total interaction energy. The introduction of halogen atoms increases the relative content of anti-syn and syn-anti conformations of DNPs as compared to the parent ones due to the formation of an energetically more favorable water structure around these conformations. A correlation is observed between the Monte Carlo results for the halogenated DNPs and their experimental photoproduct distribution. The data obtained demonstrates a sequence dependence in the photochemistry of the halogenated dinucleoside monophosphates.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.