26
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Neighboring Bases on Base-Pair Stacking Orientation: A Molecular Dynamics Study

&
Pages 29-43 | Received 19 Apr 2000, Published online: 15 May 2012
 

Abstract

It is generally believed that base-pair stacking interaction in DNA double helix is one of the strongest interactions that governs sequence directed structural variability. However, X-ray crystal structures of some base-paired doublet sequences have been seen to adopt different structures when flanked by different base-pairs. DNA crystal database, however, is still too small to make good statistical inference about effect of such flanking residues. Influence of neighboring residue on the local helical geometry of a base-paired doublet in B-DNA has been investigated here using molecular dynamics simulation. We have generated ensembles of structures for d(CA).d(TG) and d(AA).d(TT) base-paired doublets located at the centers of d(CGCGCAAAGCG).d(CGCTTTGCGCG) and d(CGC-GAAAACGCG). d(CGCGTTTTCGCG) sequences along with their analogs by varying the bases either at 5′- or 3′- position to the central doublet. Comparison of base paired doublet parameters for the ensembles of structures show that stacking geometry of d(CA).d(TG) doublet depends on some of the flanking base-pairs. On the other hand d(AA).d(TT) doublet remains nearly unperturbed when the flanking residues are altered.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.