145
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Binding of Symmetrical Cyanine Dyes into the DNA Minor Groove

, &
Pages 59-72 | Received 11 Apr 2000, Published online: 15 May 2012
 

Abstract

Optical methods, such as fluorescence, circular dichroism and linear flow dichroism, were used to study the binding to DNA of four symmetrical cyanine dyes, each consisting of two identical quinoline, benzthiazole, indole, or benzoxazole fragments connected by a trime-thine bridge. The ligands were shown to form a monomer type complex into the DNA minor groove. The complex of quinoline-containing ligand with calf thymus DNA appeared to be the most resistant to ionic strength, and it did not dissociate completely even in 1 M NaCl. Binding of cyanine dyes to DNA could also be characterized by possibility to form ligand dimers into the DNA minor groove, by slight preference of binding to AT pairs, as well as by possible intercalation between base pairs of poly(dG)·poly(dC). The correlation found between the binding constants to DNA and the extent of cyanine dyes hydrophobicity estimated as the n-octanol/water partition coefficient is indicative of a significant role of hydrophobic interactions for the ligand binding into the DNA minor groove.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.