26
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Exploring the Interaction Energies for the Binding of Hydroxydiphenyl Ethers to Enoyl-Acyl Carrier Protein Reductases

, , &
Pages 589-594 | Received 20 Apr 2002, Published online: 15 May 2012
 

Abstract

It is now well established that the potent anti-microbial compound, triclosan, interrupts the type II fatty acid synthesis by inhibiting the enzyme enoyl-ACP reductase in a number of organisms. Existence of a high degree of similarity between the recently discovered enoyl-ACP reductase from P. falciparum and B. napus enzyme permitted building of a satisfactory model for the former enzyme that explained some of the key aspects of the enzyme such as its specificity for binding to the cofactor and the inhibitor. We now report the interaction energies between triclosan and other hydroxydiphenyl ethers with the enzymes from B. napus, E. coli and P. falciparum. Examination of the triclosan-enzyme interactions revealed that subtle differences exist in the ligand binding sites of the enzymes from different sources i.e., B. napus, E. coli and P. falciparum. A comparison of their binding propensities thus determined should aid in the design of effective inhibitors for the respective enzymes.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.