202
Views
58
CrossRef citations to date
0
Altmetric
Original Articles

Studies on Adaptability of Binding Residues Flap Region of TMC-114 Resistance HIV-1 Protease Mutants

, &
Pages 137-152 | Received 19 Nov 2010, Published online: 15 May 2012
 

Abstract

Drug resistant mutations have severely restricted the success of HIV therapy. These mutations frequently involve the aspartic protease encoded by the virus. Knowledge of the molecular mechanisms underlying the conformational changes of HIV-1 protease mutants may be useful in developing more ffective and longer lasting treatment regimes. The flap regions of the protease are the target of a particular type of mutations occurring far from the active site, which are able to produce significant resistance against the anti-HIV drug TMC-114. We provide insight into the molecular basis of TMC-114 resistance major flap mutations (I50V and I54M) in HIV-1 protease. It reports the shape complementarity and receptor-ligand interaction analysis supported by unrestrained all-atom molecular dynamics simulations of wild and major flap mutants of HIV-1 protease that sample large conformational changes of the flaps and active site binding residues. Both resistant flap mutants showed less atomic interaction toward TMC-114 and more structural deviation compared to wild HIV-protease. It is due to increasing flexibility at TMC-114 binding cavity and deviation of binding residues in 3-D space. Distortion in binding cavity and deviation in binding residues are the result of alteration in hydrogen bonding. Flap region also exhibited similar behaviour due to changes in number of hydrogen bonds during simulations.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.