104
Views
6
CrossRef citations to date
0
Altmetric
Articles

Construction and assessment of reaction models between F1F0-synthase and organotin compounds: molecular docking and quantum calculations

, , &
Pages 1175-1181 | Received 30 Jun 2012, Accepted 24 Aug 2012, Published online: 02 Oct 2012
 

Abstract

Organotin compounds are the active components of some fungicides, which are potential inhibitors of the F1F0-ATP synthase. The studies about the reaction mechanism might indicate a pathway to understand how these compounds work in biological systems, however, has not been clarified so far. In this line, molecular modeling studies and density functional theory calculations were performed in order to understand the molecular behavior of those compounds when they interact with the active site of the enzyme. Our findings indicate that a strong interaction with His132 can favor a chemical reaction with organotin compounds due to π–π stacking interactions with aromatic rings of organotin compounds. Furthermore, dependence on molecule size is related to possibility of reaction with the amino acid residue His132. Thus, it can also be noticed, for organotin compounds, that substituents with four carbons work by blocking the subunit a, in view of the high energy transition found characterized by steric hindrance.

Acknowledgment

The authors are grateful to FAPEMIG and CNPq for financial support and fellowships.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.