265
Views
7
CrossRef citations to date
0
Altmetric
Articles

The entropic nature of protein thermal stabilization

, , &
Pages 1396-1405 | Received 23 Apr 2013, Accepted 24 Jun 2013, Published online: 24 Jul 2013
 

Abstract

We performed thermodynamic analysis of temperature-induced unfolding of mesophilic and thermophilic proteins. It was shown that the variability in protein thermostability associated with pH-dependent unfolding or linked to the substitution of amino acid residues on the protein surface is evidence of the governing role of the entropy factor. Numerical values of conformational components in enthalpy, entropy and free energy which characterize protein unfolding in the “gas phase” were obtained. Based on the calculated absolute values of entropy and free energy, a model of protein unfolding is proposed in which the driving force is the conformational entropy of native protein, as an energy of the heat motion (T·SNC) increasing with temperature and acting as an factor devaluating the energy of intramolecular weak bonds in the transition state.

View correction statement:
Erratum

Notes

This article was originally published with errors. This version has been corrected. Please see Erratum (http://dx.doi.org/10.1080/07391102.2013.842357).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.