513
Views
32
CrossRef citations to date
0
Altmetric
Articles

Effects of hesperidin, a flavanone glycoside interaction on the conformation, stability, and aggregation of lysozyme: multispectroscopic and molecular dynamic simulation studies?

, , , , &
Pages 1866-1879 | Received 29 Aug 2014, Accepted 08 Oct 2014, Published online: 05 Nov 2014
 

Abstract

Hesperidin (HESP), a flavanone glycoside, shows high antioxidant properties and posses ability to go through the blood–brain barrier. Therefore, it could be a potential drug molecule against aggregation based diseases such as Alzheimer’s, Parkinson’s, and systemic amyloidoses. In this work, we investigated the potential of HESP to interact with hen egg-white lysozyme (HEWL) monomer and prevent its aggregation. The HESP–HEWL binding studies were performed using a fluorescence quenching technique, molecular docking and molecular dynamics simulations. We found a strong interaction of HESP with the lysozyme monomer (Ka, ~ 5 × 104 M−1) mainly through hydrogen bonding, water bridges, and hydrophobic interactions. We showed that HESP molecule spanned the highly aggregation prone region (amino acid residues 48-101) of HEWL and prevented its fibrillar aggregation. Further, we found that HESP binding completely inhibited amorphous aggregation of the protein induced by disulfide-reducing agent tries-(2-carboxyethyl) phosphine. Conformational and stability studies as followed by various tertiary and secondary structure probes revealed that HESP binding only marginally affected the lysozyme monomer conformation and increased both stability and reversibility of the protein against thermal denaturation. Future studies should investigate detail effects of HESP on solvent dynamics, structure, and toxicity of various aggregates. The answers to these questions will not only target the basic sciences, but also have application in biomedical and biotechnological sciences.

Acknowledgment

The authors gratefully acknowledge the UM-DAE Centre for Excellence in Basic Sciences, UGC-Faculty Recharge Programme (UGC-FRP), and University of Mumbai for laboratory facilities and financial assistance. RRSP acknowledges DST-SERB (SR/SO/HS-0117/2012) for the computational facility provided at the Bombay College of Pharmacy.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.