458
Views
41
CrossRef citations to date
0
Altmetric
Research Articles

Cloning, expression, and molecular dynamics simulations of a xylosidase obtained from Thermomyces lanuginosus

, , , , &
Pages 1681-1692 | Received 04 Jul 2015, Accepted 28 Aug 2015, Published online: 19 Oct 2015
 

Abstract

The aim of this study was to clone, express, and characterize a β-xylosidase (Tlxyn1) from the thermophilic fungus Thermomyces lanuginosus SSBP in Pichia pastoris GS115 as well as analyze optimal activity and stability using computational and experimental methods. The enzyme was constitutively expressed using the GAP promoter and secreted into the medium due to the alpha-mating factor secretion signal present on the expression vector pBGPI. The 1276 bp gene consists of an open reading frame that does not contain introns. A 12% SDS–PAGE gel revealed a major protein band at an estimated molecular mass of 50 kDa which corresponded to zymogram analysis. The three-dimensional structure of β-xylosidase was predicted, and molecular dynamics simulations at different ranges of temperature and pH were performed in order to predict optimal activity and folding energy. The results suggested a strong conformational temperature and pH dependence. The recombinant enzyme exhibited optimal activity at pH 7 and 50°C and retained 80% activity at 50°C, pH 7 for about 45 min. This is the first report of the cloning, functional expression, and simulations study of a β-xylosidase from Thermomyces species in a fungal host.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.