109
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Gas-phase acidity and dynamics of the protonation processes of carbidopa and levodopa. A QM/QD study

, &
Pages 2268-2280 | Received 29 Aug 2015, Accepted 23 Oct 2015, Published online: 04 Mar 2016
 

Abstract

The present work details, our efforts to investigate and compare the acid–base properties of levodopa (LD) and carbidopa (CD), a drug combination being used in the treatment of Parkinson’s disease. Protonation and deprotonation were examined for all possible sites in the two drugs. Proton affinity and proton detachment enthalpies were computed at the B3LYP/6–311++G** level of theory. Results of the present work reveal that CD is more basic and can abstract protons in solution much more efficiently than LD. Furthermore, at all deportation sites considered, CD is more acidic than LD. DFT-based ADMP, dynamic simulations have been performed to explore the dynamics of the protonation processes in LD and CD. Thus, while the dynamics of the protonation process of LD is very straightforward leading to the formation of the corresponding cation, the protonation process in CD is very complex involving a major geometry change and rearrangement. Results of the present work reveal that the active species in acid medium is not CD in its normal geometry but a carbonyl hydrazine form instead. The presence of the carbonyl group β to the hydrazine group may very well underlie its enhanced activity which allows it to bind to the active site of the DDC enzyme. The relative stabilities of various water–water–CD complexes have been computed and compared.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.