747
Views
23
CrossRef citations to date
0
Altmetric
Research Articles

Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches

, , , , &
Pages 1710-1728 | Received 05 Apr 2016, Accepted 17 May 2016, Published online: 03 Oct 2016
 

Abstract

Epidermal growth factor receptor (EGFR), a transmembrane glycoprotein, is overexpressed in many cancers such as head-neck, breast, prostate, and skin cancers for this reason it is a good target in cancer therapy and diagnosis. In nanobody-based cancer diagnosis and treatment, nanobodies with high affinity toward receptor (e.g. EGFR) results in effective treatment or diagnosis of cancer. In this regard, the main aim of this study is to develop a method based on molecular dynamic (MD) simulations for designing of 7D12 based nanobody with high affinity compared with wild-type nanobody. By surveying electrostatic and desolvation interactions between different residues of 7D12 and EGFR, the critical residues of 7D12 that play the main role in the binding of 7D12 to EGFR were elucidated and based on these residues, five logical variants were designed. Following the 50 ns MD simulations, pull and umbrella sampling simulation were performed for 7D12 and all its variants in complex with EGFR. Binding free energy of 7D12 (and all its variants) with EGFR was obtained by weighted histogram analysis method. According to binding free energy results, GLY101 to GLU mutation showed the highest binding affinity but this variant is unstable after 50 ns MD simulations. ALA100 to GLU mutation shows suitable binding enhancement with acceptable structural stability. Suitable position and orientation of GLU in residue 100 of 7D12 against related amino acids of EGFR formed some extra hydrogen and electrostatic interactions which resulted in binding enhancement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.