1,253
Views
37
CrossRef citations to date
0
Altmetric
Research Articles

Genome-wide sequential, evolutionary, organizational and expression analyses of phenylpropanoid biosynthesis associated MYB domain transcription factors in Arabidopsis

&
Pages 1577-1601 | Received 15 Mar 2017, Accepted 04 May 2017, Published online: 02 Jun 2017
 

Abstract

The MYB gene family represents one of the largest groups of transcription factors in plants. Recent evidences have also demonstrated key role of MYB transcription factors in regulating the expression of major genes involved in the biosynthesis of phenylpropanoid compounds which confer biotic and abiotic stress tolerance in plant species. However, no comprehensive genome-wide analysis of the phenylpropanoid pathway-associated MYB transcription factors has been reported thus far. In this study, 11 Arabidopsis MYB proteins, such as MYB3, MYB4, MYB7, MYB11, MYB12, MYB32, MYB75, MYB90, MYB111, MYB113, and MYB114 were initially identified considering their reported regulatory function in phenylpropanoid biosynthesis pathway. Subsequent genome-wide analysis have identified the corresponding homologues from Glycine max, Vigna radiata, Oryza sativa, and Zea mays, while homologous of Arabidopsis MYB75, MYB90, MYB113, and MYB114 were not detected in rice and maize genomes. The identified MYB proteins were classified into three groups (I-III) based on phylogeny. Sequence and domain analysis revealed presence of two conserved DNA binding MYB domains in the selected MYB proteins. Promoter analysis indicated presence of cis-regulatory elements related to light signaling, development, and stress response. Expression analysis of selected Arabidopsis MYB genes revealed their function in plant development and abiotic stress response, consistent with gene ontology annotations. Together, these results provide a useful framework for further experimental studies for the functional characterization of the target MYB genes in the context of regulation of phenylpropanoid biosynthesis and plant stress response.

Acknowledgements

SR acknowledges the Centre of Advanced Studies at the Department of Botany, The University of Burdwan, for necessary infrastructural support. SKM is thankful to the Department of Biotechnology (recognized by DBT, Govt. of India), The University of Burdwan for necessary infrastructural support. The authors thank Mehali Mitra and Anurima Kundu for assistance in sequence analysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.