119
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Specification of binding modes between a transmembrane peptide mimic of ATP6V0C and polytopic E5 of human papillomavirus-16

&
Pages 2618-2627 | Received 29 Jun 2017, Accepted 31 Jul 2017, Published online: 31 Aug 2017
 

Abstract

Interaction of E5 of papillomavirus-16 based on its three transmembrane domains (TMDs) with a peptide mimicking the fourth TMD (TMD-A) of the 16 kDa c subunit of the human vacuolar H+-ATPase, ATP6V0C, and one of its mutant is investigated. Docking reveals binding of the peptide between the second and third TMD of E5. A series of hydrophobic residues are responsible for the contact. Estimated weak binding energies based on potential of mean force calculations reveal marginal differences of the estimated binding energies between wild type (WT) and mutant peptide. Also differences in estimated binding energies of dimers of the individual TMDs of E5 with the WT peptide are marginal. Correlation of rotational data derived from coarse-grained molecular dynamics simulations of the peptides and the protein as well as from the principal component analysis reveal that the binding of TMD-A with TMD3 is enthalpy driven and binding with TMD2 is guided by entropic conditions.

Acknowledgment

WBF thanks the Ministry of Science and Technology, Taiwan, for financial support. DRM acknowledges a Taiwan scholarship from the Ministry of Education of Taiwan. We are grateful to the National Center for High-performance Computing for computer time and facilities.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.