303
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Binding of ibuprofen to human hemoglobin: elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques

, , &
Pages 3137-3154 | Received 08 Jun 2017, Accepted 17 Sep 2017, Published online: 11 Oct 2017
 

Abstract

Ibuprofen, used for the treatment of acute and chronic pain, osteoarthritis, rheumatoid arthritis, and related conditions has ample affinity to globular proteins. Here we have explored this fundamental study pertaining to the interaction of ibuprofen with human hemoglobin (HHb), using multispectroscopic, calorimetric, and molecular modeling techniques to gain insights into molecular aspects of binding mechanism. Ibuprofen-induced graded decrease in absorption spectra indicates protein disruption along with sedimentation of HHb particle. Red shifting of absorption peak at 195 nm indicates alteration in the secondary structure of HHb upon interaction with ibuprofen. Flouremetric and isothermal titration calorimetric (ITC) studies suggested one binding site in HHb for ibuprofen at 298.15 K. However, with increase in temperature, ITC revealed increasing number of binding sites. The negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) along with positive value of entropy change (ΔS0) strongly suggest that it is entropy-driven spontaneous exothermic reaction. Moreover, hydrophobic interaction, hydrogen bonding, and ππ interaction play major role in this binding process as evidenced from ANS (8-anilino-1-napthalenesulphonic acid), sucrose binding, and molecular modeling studies. The interaction impacts on structural integrity and functional aspects of HHb as confirmed by CD spectroscopy, increased free iron release, increased rate of co-oxidation and decreased rate of esterase activity. These findings suggest us to conclude that ibuprofen upon interaction perturbs both structural and functional aspects of HHb.

Acknowledgments

Authors indebted to The Indian Association for the Cultivation of Science, Kolkata for providing the access of CD Spectropolarimeter. The authors are also grateful to Mr. Souvik Roy, technical officer, DBT-CU-IPLS, central facility of University of Calcutta for cooperating in accessing the ITC.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.