175
Views
4
CrossRef citations to date
0
Altmetric
Research Article

The influence of 5-fluorouracil anticancer drug on the DNA base pairs; a quantum chemical study

, &
Pages 1-19 | Received 31 Aug 2017, Accepted 05 Dec 2017, Published online: 22 Jan 2018
 

Abstract

In the present study, various hydrogen bonded complexes between five-fluorouracil (FU) with AT and GC base pairs were studied. First, to determine the affinity of different sites of the parent structures (FU, AT, and GC) for the hydrogen bond formation, their molecular electrostatic potentials are explored. The complexation energies and the strength of individual HBs of the plausible complexes were evaluated by energetic, geometric, spectroscopic, topologic, and molecular orbital descriptors. Our results reveal that, the FU–GC complexes (34.76–44.42 kcal mol−1) are more stable than the FU–AT ones (21.00–30.35 kcal mol−1). Among the complexes, the FU3–AT1 and FU3–GC3 are the most stable structures in the both series, which can be related to the sites with the highest affinity. Second, a detail analysis of the hydrogen bond descriptors were performed to elucidate the effect of FU on the strength of HB interactions within the base pairs. Interestingly, due to the formation of various interactions between the active sites of basic molecules, the strength of HB within the base pairs in the most cases increase about +2.75 and +.57 kcal mol−1 for the GC and AT nucleobases, respectively. Finally, several aromatic indices (HOMA, FLU, NICS (0) and NICS (1)) were applied to evaluate the significance of π-electron delocalization (π-ED) of 5/6 membered rings. These results clearly show that the π-ED of the benchmark systems increase with the formation or strengthening of the HB, which is in line with the resonance assisted hydrogen bond theory.

Acknowledgments

The authors confirm that there is no significant financial support for this work that could have influenced its outcome.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.