133
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of new promising plant-based lead compounds for inhibition of prokaryotic replicative DNA polymerases: combination of in silico and in vitro studies

ORCID Icon, , &
Pages 4222-4237 | Received 15 Aug 2018, Accepted 03 Nov 2018, Published online: 10 Dec 2018
 

Abstract

Emerging widespread bacterial resistance to current antibiotics with traditional targets is one of the major global concerns. Therefore, so many investigations are exploring the potential of other druggable macromolecules of bacteria such as replication machinery components that are not addressed by previous antibiotics. DNA polymerase is the major part of this machine. However, a few studies have been done on it so far. In this respect, we report the discovery of four new plant-based leads against DNA polymerase (pol) IIIC (three leads) and pol IIIE (one lead) of Gram-positive and negative bacteria by combining a sequentially constrained high-throughput virtual screenings on Traditional Chinese Medicine Database with in vitro assays. The compounds displayed relatively good levels of inhibitory effect. They were active against their designated targets at micromolar concentrations. The IC50 values for them are ranged from 25 to 111 μM. In addition, they showed minimum inhibitory concentrations in the range of 8–128 μg/mL against five representatives of pathogenic bacteria species. However, they were inactive against Pseudomonas aeruginosa. Given these results, these leads hold promise for future modification and optimization to be more effective in lower concentrations and also against most of the important bacterial species.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors would like to thank the University of Sistan and Baluchestan Research Council for providing necessary facility and technical help.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.