156
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Effect of aqueous medium on low-frequency dynamics, chemical activity and physical properties of a spherical virus

, , &
Pages 2207-2214 | Received 22 Mar 2019, Accepted 28 May 2019, Published online: 08 Jun 2019
 

Abstract

In this work, we have studied the effect of size and aqueous medium on the low-frequency dynamics, physical properties like melting temperature and glass transition temperature and chemical properties like catalytic activation energy of spherical virus using Lindemann’s criteria and Arrhenius relation under their dynamic limit. The melting temperature and catalytic activation energy decrease with decreasing size of spherical virus. The glass transition temperature which increases with decreasing size of the virus is analyzed through the size dependent melting temperature. The melting temperature and catalytic activation energy of spherical virus of particular size increases when it is embedded in glycerol or water due to mismatch of the physical properties at the interface of virus and surrounding medium. In addition, the glass transition temperature of free and glycerol/water embedded virus using low-frequency vibrational modes has been calculated under the framework of elastic continuum approximation model. The glass transition temperature of spherical virus decreases with size when embedded in glycerol or water. A correlation between Tg and Tm is also drawn for spherical viruses. The study can be useful for spherical virus borne therapy i.e. in detecting and killing of the spherical viruses using a principle based on acoustic phonons (sound waves) resonance.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are thankful to the Science and Engineering Research Board (SERB- SB/S2/CMP-0005/2013) and DST Indo-Poland (DST/INT/POL/P-33/2016) project for providing financial assistance.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.