203
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Effects of natural compounds on conformational properties and hairpin formation of amyloid-β42 monomer: docking and molecular dynamics simulation study

, , , &
Pages 3371-3383 | Received 14 Apr 2019, Accepted 10 Aug 2019, Published online: 15 Sep 2019
 

Abstract

The β42 amyloid peptides (Aβ) are identified as a candidate target for Alzheimer’s drugs. Phenolic compounds can bind to the Aβ and inhibit amyloid formation. However, the inhibitory mechanism of phenolic compounds remains unclear. In this study, the molecular dynamic simulation and docking program were used to characterize the molecular details of inhibitory mechanism of the phenolic compounds. Our Results show that the phenolic compounds can bind to hydrophobic region in Aβ42 monomer and alter hydrophobic interactions network at Aβ42 which play a key role in β-sheet formation. The cluster analysis and interactions network analysis were used to probe conformational changes in Aβ42. In most populated clusters of Aβ42-phenolic compounds complexes, the sheet structures were not observed or reduced. It seems that the binding of phenolic compounds can induce larger conformational diversity for amyloid peptide and changes conformational properties of amyloid peptide. The phenolic compounds can deform β-Hairpin structure of Aβ by destabilizing salt bridges E22-K28 and D23-K28 which can alter the conformation of Aβ42 in aqueous solution. These findings are in accordance with experimental results, to some extent give a molecular level interpretation for the inhibitory mechanism of phenolic compounds .In addition, this study may add important new details to the inhibitory mechanism of Alzheimer’s drug.

Communicated by Ramaswamy H. Sarma

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This research has been supported by the Iranian National Science Foundation (INSF), 96006759, and Tarbiat Modares Research grant, IG-39708.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.