224
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Discovery and identification of putative adenosine kinase inhibitors as potential anti-epileptic agents from structural insights

&
Pages 5320-5337 | Received 18 Oct 2019, Accepted 25 Nov 2019, Published online: 09 Dec 2019
 

Abstract

The seizure controlling activity of human adenosine kinase (AK) has been identified as a promising target for the development of small-molecule inhibitors to be used as potential anti-epileptic agents. Overexpression of AK has been considered as a pathologic hallmark of epilepsy. However, the exploration of AK for the treatment of epilepsy still remains a challenge in drug discovery. In a pursuit to recognize novel inhibitors of AK, a structure-based virtual screening study based on the molecular docking analysis of the compounds of Asinex database was performed. Crystal structure of human AK in complex with inhibitor revealed the crucial ligand–protein interactions (Asn14, Asn18, Ser65 and Phe170) within the active site and offers opportunities for further development of the potential anti-epileptic agents. Overall, 20 novel diverse potential hits appear to be important scaffolds for the design of novel AK inhibitors with better docking scores, dG bind scores with in silico desired pharmacokinetic parameters and synthetic accessibility scores than the co-crystallized ligand. Computational hits obtained through validated virtual screening protocol (superposition and enrichment) followed by simulation studies, quantum mechanics with better pharmacokinetic performance and hit optimization study provides in silico evidence for the applicability of these valuable tools in drug discovery and towards the development of a better therapeutic regime of epilepsy.

Communicated by Ramaswamy H. Sarma

Acknowledgement

Authors are grateful to Central University of Rajasthan for providing licensed Schrodinger molecular modeling software.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the Department of Science and Technology, Delhi under Grant [DST/INSPIRE/Fellowship/2014/241].

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.