298
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

From normal to competo-allosteric regulation: insights into the binding pattern dynamics of DSPI protein of Pseudomonas aeruginosa

&
Pages 538-557 | Received 19 Mar 2019, Accepted 30 Dec 2019, Published online: 21 Jan 2020
 

Abstract

DSPI, a putative enoyl-coenzyme A (CoA) hydratase/isomerase, is anticipated to be involved in the synthesis of cis-2-decenoic acid (CDA), a quorum sensing (QS) signal molecule present in the superbug Pseudomonas aeruginosa. The current study not only adapts a broad-spectrum strategy for the lucid design of small molecule modulators but also provides novel allosteric inhibitors for DSPI, to investigate its function and potential as a therapeutic target. Docking analysis revealed that the compound 10252273, bound to the specific allosteric site, interacted with Glu118, unique amino acid residue of the active binding pocket, hence indicates the presence of a competitive allosteric site. The current study thus identifies and characterizes inhibitors by targeting the normal binding site and also reports the presence of the competo-allosteric site in the same binding tunnel as the normal site. Molecular docking studies proposed two chemical compounds that share a benzamide-benzimidazole (BB) backbone as potent inhibitors that can obstruct the mechanism of DSPI by targeting both the normal and proposed allosteric binding sites. MD simulations further revealed the disruption of the normal binding site due to the displacement of critical residues Cys146 and Glu118. The rearrangement of H-bond pattern, pi-pi interactions, and strong hydrophobic interactions were observed at both the binding sites. The allosteric pocket inhibitor exhibited improved binding energy than the normal site inhibitor based on MMGBSA and MMPBSA analysis. With subsequent characterization, the current study reveals the allosteric binding site and provides insights into the drug binding mechanism of DSPI.

Communicated by Ramaswamy H. Sarma

Acknowledgements

Authors are highly grateful to the Pakistan-United States Science and Technology Cooperation Program and International Foundation for Science (IFS) for granting financial assistance.

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

Pakistan–United States Science and Technology Cooperation Program.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.