390
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Conformational flexibility correlates with glucose tolerance for point mutations in β-glucosidases – a computational study

, , , , & ORCID Icon
Pages 1621-1634 | Received 04 Dec 2019, Accepted 20 Feb 2020, Published online: 10 Mar 2020
 

Abstract

β-glucosidases (EC 3.2.1.21) have been described as essential to second-generation biofuel production. They act in the last step of the lignocellulosic saccharification, cleaving the β − 1,4 glycosidic bonds in cellobiose to produce two molecules of glucose. However, β-glucosidases have been described as strongly inhibited by glucose, causing an increment of cellobiose concentration. Also, cellobiose is an inhibitor of other enzymes used in this process, such as exoglucanases and endoglucanases. Hence, the engineering of thermostable and glucose-tolerant β-glucosidases has been targeted by many studies. In this study, we performed high sampling accelerated molecular dynamics for a wild glucose-tolerant GH1 β-glucosidase (Bgl1A), a wild non-tolerant (Bgl1B), and a set of glucose-tolerant Bgl1B’s mutants: V302F, N301Q/V302F, F172I, V227M, G246S, T299S, and H228T. Our results suggest that point mutations promissory to induce glucose tolerance trend to enhance the mobility of the flexible loops around the active site. Mutations affected B and C loops regions, and an αβ-hairpin motif between them. Conformational clusters and free energy landscape profiles suggest that the mobility acquired by mutants allows a higher closure of the substrate channel. This closure is compatible with a higher impedance for glucose entrance and stimulus of its withdrawal. Based on mutants’ structural analyses, we inferred that both the direct stereochemical effect on the glucose path and the changes in the mobility affect glucose tolerance. We hope these results be useful for the rational design of glucose-tolerant and industrially promising enzymes.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors thank the Brazilian funding agencies: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001. Project number: 51/2013 − 23038.004007/2014-82.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.