3,816
Views
48
CrossRef citations to date
0
Altmetric
Research Articles

Targeting SARS-COV-2 non-structural protein 16: a virtual drug repurposing study

, , , , &
Pages 4633-4646 | Received 18 May 2020, Accepted 02 Jun 2020, Published online: 23 Jun 2020
 

Abstract

Non-Structural Protein 16 (nsp-16), a viral RNA methyltransferase (MTase), is one of the highly viable targets for drug discovery of coronaviruses including SARS-CoV-2. In this study, drug discovery of SARS-CoV-2 nsp-16 has been performed by a virtual drug repurposing approach. First, drug shape-based screening (among FDA approved drugs) with a known template of MTase inhibitor, sinefungin was done and best compounds with high similarity scores were selected. In addition to the selected compounds, 4 nucleoside analogs of anti-viral (Raltgravir, Maraviroc and Favipiravir) and anti-inflammatory (Prednisolone) drugs were selected for further investigations. Then, binding energies and interaction modes were found by molecular docking approaches and compouds with lower energy were selected for further investigation. After that, Molecular dynamics (MD) simulation was carried to test the potential selected compounds in a realistic environment. The results showed that Raltegravir and Maraviroc among other compounds can bind strongly to the active site of the protein compared to sinefungin, and can be potential candidates to inhibit NSP-16. Also, the MD simulation results suggested that the Maraviroc and Raltegravir are more effective drug candidates than Sinefungin for inhibiting the enzyme. It is concluded that Raltegravir and Maraviroc which may be used in the treatment of COVID-19 after Invitro and invivo studies and clinical trial for final confirmation of drug effectiveness.

Communicated by Ramaswamy H. Sarma

Acknowledgements

We would like to appreciate all those who have helped us in this work. The financial support given by the Jahrom University of Medical Sciences is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.