5,193
Views
72
CrossRef citations to date
0
Altmetric
Research Articles

Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro

, ORCID Icon, ORCID Icon, , , , & show all
Pages 4936-4948 | Received 27 Feb 2020, Accepted 08 Jun 2020, Published online: 24 Jun 2020
 

Abstract

The SARS-CoV-2 was confirmed to cause the global pandemic of coronavirus disease 2019 (COVID-19). The 3-chymotrypsin-like protease (3CLpro), an essential enzyme for viral replication, is a valid target to combat SARS-CoV and MERS-CoV. In this work, we present a structure-based study to identify potential covalent inhibitors containing a variety of chemical warheads. The targeted Asinex Focused Covalent (AFCL) library was screened based on different reaction types and potential covalent inhibitors were identified. In addition, we screened FDA-approved protease inhibitors to find candidates to be repurposed against SARS-CoV-2 3CLpro. A number of compounds with significant covalent docking scores were identified. These compounds were able to establish a covalent bond (C–S) with the reactive thiol group of Cys145 and to form favorable interactions with residues lining the substrate-binding site. Moreover, paritaprevir and simeprevir from FDA-approved protease inhibitors were identified as potential inhibitors of SARS-CoV-2 3CLpro. The mechanism and dynamic stability of binding between the identified compounds and SARS-CoV-2 3CLpro were characterized by molecular dynamics (MD) simulations. The identified compounds are potential inhibitors worthy of further development as COVID-19 drugs. Importantly, the identified FDA-approved anti-hepatitis-C virus (HCV) drugs paritaprevir and simeprevir could be ready for clinical trials to treat infected patients and help curb COVID-19.

Communicated by Ramaswamy H. Sarma

Acknowledgements

This work was supported by the Postdoctoral Project from Guangxi University. Authors would like to thank Guangxi University, Prince Sattam Bin Abdulaziz University, University of Leuven and Åbo Akademi University for providing the necessary tools to conduct this research. The Sigrid Jusélius Foundation, Biocenter Finland Bioinformatics and Drug Discovery and Chemical Biology networks, CSC IT Center for Science, Joe, Pentti and Tor Borg Memorial Fund and Prof. Mark Johnson and Dr. Jukka Lehtonen are gratefully acknowledged for the excellent computational infrastructure at the Åbo Akademi University.

Disclosure statement

Authors have no conflict of interest to declare.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.