5,458
Views
31
CrossRef citations to date
0
Altmetric
Research Articles

In-silico drug repurposing and molecular dynamics puzzled out potential SARS-CoV-2 main protease inhibitors

ORCID Icon, & ORCID Icon
Pages 5756-5767 | Received 22 Jun 2020, Accepted 29 Jun 2020, Published online: 20 Jul 2020
 

Abstract

Herein, the DrugBank database which contains 10,036 approved and investigational drugs was explored deeply for potential drugs that target SARS-CoV-2 main protease (Mpro). Filtration process of the database was conducted using three levels of accuracy for molecular docking calculations. The top 35 drugs with docking scores > −11.0 kcal/mol were then subjected to 10 ns molecular dynamics (MD) simulations followed by molecular mechanics–generalized Born surface area (MM-GBSA) binding energy calculations. The results showed that DB02388 and Cobicistat (DB09065) exhibited potential binding affinities towards Mpro over 100 ns MD simulations, with binding energy values of −49.67 and −46.60 kcal/mol, respectively. Binding energy and structural analyses demonstrated the higher stability of DB02388 over Cobicistat. The potency of DB02388 and Cobicistat is attributed to their abilities to form several hydrogen bonds with the essential amino acids inside the active site of Mpro. Compared to DB02388 and Cobicistat, Darunavir showed a much lower binding affinity of −34.83 kcal/mol. The present study highlights the potentiality of DB02388 and Cobicistat as anti-COVID-19 drugs for clinical trials.

Communicated by Ramaswamy H. Sarma.

Graphical Abstract

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The computational work was completed with resources supported by the Science and Technology Development Fund, STDF, Egypt, Grants No. 5480 & 7972.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.