433
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Structural insight into TNF-α inhibitors through combining pharmacophore-based virtual screening and molecular dynamic simulation

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 5920-5939 | Received 25 Apr 2020, Accepted 06 Jul 2020, Published online: 24 Jul 2020
 

Abstract

Tumor Necrosis Factor-alpha (TNF-α), a multifunctional cytokine responsible for providing resistance against infections, inflammation, and cancers. TNF-α has emerged as a promising drug target against several autoimmune and inflammatory disorders. Several synthetic antibodies (Infliximab, Etanercept, and Adalimumab) are available, but their potential to cause severe side effects has prompted them to develop alternative small molecules-based therapies for inhibition of TNF-α. In the present study, combined in silico approaches based on pharmacophore modeling, virtual screening, molecular docking, and molecular dynamics studies were employed to understand significant direct interactions between TNF-α protein and small molecule inhibitors. Initially, four different small molecule libraries (∼17.5 million molecules) were virtually screened against the selected pharmacophore model. The identified hits were further subjected to molecular docking studies. The three potent lead compounds (ZINC05848961, ZINC09402309, ZINC04502991) were further subjected to 100 ns molecular dynamic studies to examine their stability. Our docking and molecular dynamic analysis revealed that the selected lead compounds target the TNF receptor (TNFR) and efficiently block the production of TNF. Moreover, in silico ADMET (Absorption, Distribution, Metabolism, Excretion and Toxicity) analysis revealed that all the predicted compounds have good pharmacokinetic properties with high gastrointestinal absorption and a decent bioavailability score. Furthermore, toxicity profiles further evidenced that these compounds have no risk of being mutagenic, tumorigenic, reproductive and irritant except ZINC11915498. In conclusion, the present study could serve as the starting point to develop new therapeutic regimens to treat various TNF- related diseases.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The authors are grateful to the Higher Education Commission (HEC) for their Financial Support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.