260
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

In vitro, in vivo and in silico rationale for the muscle loss due to therapeutic drugs used in the treatment of Mycobacterium tuberculosis infection

, , , & ORCID Icon
Pages 44-60 | Received 19 Apr 2020, Accepted 03 Aug 2020, Published online: 14 Aug 2020
 

Abstract

Tuberculosis globally affects millions of people every year and is responsible for high rates of mortality and morbidity in tropical countries like India. The treatment of tuberculosis involves using the first line of drugs especially Isoniazid, Pyrazinamide, Streptomycin, Ethambutol and Rifampicin for treatment under the DOTS (Directly Observed Treatment Shots) regime which can last up to minimum of six months. These drugs although widely used against Mycobacterium tuberculosis has given rise to multi drug resistant (MDR) tuberculosis strain. It has been observed widely that prolonged drug treatment for tuberculosis patient has rendered several side effects that include increasing muscle wasting and malnutrition. In our study, we have investigated the role of these major tuberculosis drugs namely Rifampicin, Streptomycin, Isoniazid, Pyrazinamide, and Ethambutol on actin polymerization which are famously known to be a central player in the sarcomere region of the muscle in human body. For in vitro studies, we have used biophysical approaches such as 90° scattering assay (RLS), size exclusion chromatography (SEC), Dynamic light scattering (DLS), Circular dichroism spectroscopy (CD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), kinetic analysis to understand the time taken to break down effect of above mentioned drugs on actin disruption. In vivo analysis was carried out on yeast Δend3 mutants which are rich in F-actin filaments in order to understand the effect of the aforementioned drugs in rendering the muscle wasting phenomenon in tuberculosis. Furthermore, we also carried out in silico analysis to understand the probable modes of binding of these drugs on actin filaments.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.