20,393
Views
112
CrossRef citations to date
0
Altmetric
Research Articles

Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) – a molecular docking study

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 190-203 | Received 18 Jun 2020, Accepted 10 Aug 2020, Published online: 27 Aug 2020
 

Abstract

COVID-19 (Coronavirus disease 2019) is a transmissible disease initiated and propagated through a new virus strain SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) since 31st December 2019 in Wuhan city of China and the infection has outspread globally influencing millions of people. Here, an attempt was made to recognize natural phytochemicals from medicinal plants, in order to reutilize them against COVID-19 by the virtue of molecular docking and molecular dynamics (MD) simulation study. Molecular docking study showed six probable inhibitors against SARS-CoV-2 Mpro (Main protease), two from Withania somnifera (Ashwagandha) (Withanoside V [10.32 kcal/mol] and Somniferine [9.62 kcal/mol]), one from Tinospora cordifolia (Giloy) (Tinocordiside [8.10 kcal/mol]) and three from Ocimum sanctum (Tulsi) (Vicenin [8.97 kcal/mol], Isorientin 4′-O-glucoside 2″-O-p-hydroxybenzoagte [8.55 kcal/mol] and Ursolic acid [8.52 kcal/mol]). ADMET profile prediction showed that the best docked phytochemicals from present work were safe and possesses drug-like properties. Further MD simulation study was performed to assess the constancy of docked complexes and found stable. Hence from present study it could be suggested that active phytochemicals from medicinal plants could potentially inhibit Mpro of SARS-CoV-2 and further equip the management strategy against COVID-19-a global contagion.

    Highlights

  • Holistic approach of Ayurvedic medicinal plants to avenge against COVID-19 pandemic.

  • Active phytoconstituents of Ayurvedic medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) predicted to significantly hinder main protease (Mpro or 3Clpro) of SARS-CoV-2.

  • Through molecular docking and molecular dynamic simulation study, Withanoside V, Somniferine, Tinocordiside, Vicenin, Ursolic acid and Isorientin 4′-O-glucoside 2″-O-p-hydroxybenzoagte were anticipated to impede the activity of SARS-CoV-2 Mpro.

  • Drug-likeness and ADMET profile prediction of best docked compounds from present study were predicted to be safe, drug-like compounds with no toxicity.

Communicated by Ramaswamy H. Sarma

Graphical Abstract

Acknowledgements

BHU administration, Center for Bioinformatics, School of Biotechnology, Department of Biotechnology, ISc, BHU, Varanasi, for the use of YASARA software. We are thankful to Manish Kumar Tripathi, Research associate, Department of Biophysics, AIIMS, New Delhi, for help in image visualization. CS and SKS thankfully acknowledge RUSA-Phase 2.0 Policy (TNmulti-Gen), Dept. of Edn, Govt. of India (Grant No: F.24-51/2014-U).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.