334
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Screening natural inhibitors against upregulated G-protein coupled receptors as potential therapeutics of Alzheimer’s disease

, , &
Pages 673-684 | Received 17 Jan 2020, Accepted 27 Aug 2020, Published online: 09 Sep 2020
 

Abstract

Computational approaches have been helpful in high throughput screening of drug libraries and designing ligands against receptors. Alzheimer's disease is a complex neurological disorder, which causes dementia. In this disease neurons are damaged due to formation of Amyloid-beta plaques and neurofibrillary tangles, which along with some other factors contributes to disease development and progression. The objective of this study was to predict tertiary structures of five G-protein coulped neurotransmitter receptors; CHRM5, CYSLTR2, DRD5, GALR1 and HTR2C, that are upregulated in Alzheimer’s disease, and to screen potential inhibitors for against these receptors. In this study, Comparative modelling, molecular docking, MMGBSA analysis, ADMET screening and molecular dynamics simulation were performed. Tertiary structures of the five GPCRs were predicted and further subjected to molecular docking against natural compounds. Pharmacokinetic studies of natural compounds were also conducted for assessing drug-likeness properties. Molecular dynamics simulations were performed to investigate the structural stability and binding affinities of each complex. Finally, the results suggested that ZINC04098704, ZINC31170017, ZINC05998597, ZINC67911229, and ZINC67910690 had better binding affinity with CHRM5, CYSLTR2, DRD5, GALR1, and HTR2C (5-HT2C) proteins, respectively.

Communicated by Ramaswamy H. Sarma

Acknowledgements

AC is highly thankful to the Department of Biotechnology, MNNIT-Allahabad, for providing essential facilities. Computing facility availed at IIIT Allahabad is highly acknowledged. AM is highly thankful to SERB New Delhi for a research grant.

Disclosure statement

The authors declare no competing interests.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.