365
Views
16
CrossRef citations to date
0
Altmetric
Research Articles

The effect of hesperidin and luteolin isolated from Eriocephalus africanus on apoptosis, cell cycle and miRNA expression in MCF-7

, &
Pages 1791-1800 | Received 18 May 2020, Accepted 02 Oct 2020, Published online: 14 Oct 2020
 

Abstract

This study investigates the molecular mechanisms underlying the anticancer activity of hesperidin and luteolin, isolated from Eriocephalus africanus, in the human breast carcinoma cell line (MCF-7). The viability of MCF-7 cells, upon treatment with hesperidin and luteolin, was evaluated using the 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay; apoptotic activity and effect on cell cycle progression were analysed by flow cytometry; effect on expression of key apoptotic regulatory genes (caspase-3, -8, -9, Bcl-2 and Bax) and apoptotic microRNAs (-16, -21 and -34a) were evaluated using quantitative real-time PCR. Hesperidin and luteolin reduced cell viability in a dose and time-dependent manner, caused a significant accumulation of apoptotic cells into the G0/G1 and sub-G1 cell cycle phases, induced apoptosis through the intrinsic and extrinsic pathways, down-regulated anti-apoptotic, Bcl-2, and upregulated pro-apoptotic, Bax. In addition, hesperidin and luteolin significantly downregulated the expression of miR-21 and upregulated that of miR-16 and -34a in MCF-7. Spearman`s rank analysis revealed a positive correlation between Bcl-2 and miR-21 and negative correlation between Bcl-2, miR-16 and -34a. Findings from this study provide new evidence on the molecular basis of the anticancer activity of luteolin and hesperidin in breast cancer cell lines.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors confirm no conflict of interest.

Additional information

Funding

The author(s) are grateful to the University of KwaZulu-Natal, College of Health Sciences under [Grant number 636742], and the National Research Foundation of South Africa through Dr. Roshila Moodley [Grant number 114008] for their financial support.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.