301
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Novel copper complexes of metronidazole and metronidazole benzoate: synthesis, characterization, biological and computational studies

, , , , , , & ORCID Icon show all
Pages 5446-5461 | Received 25 Aug 2020, Accepted 28 Dec 2020, Published online: 11 Jan 2021
 

Abstract

Synthesis and characterization of novel copper complexes of metronidazole benzoate (MTZ Benz), metronidazole (MTZ) in the presence of another ligand; dichloroacetic acid (DCA) were compared and reported in the present work. Different bacterial and fungus strains were ascertained to evaluate the biological potency of the synthesized complexes, that is, Escherichia coli, Bordetella bronceptica, Staphylococcus epidermidis, Baccilus pumilus, Staphylococcus aureus and yeast strain Saccharomyces cerevisiae. Agar diffusion method was employed to investigate in vitro antibacterial activities of the synthesized metal complexes and the tested parent ligands. α-Amylase and α-glucosidase inhibition studies of the synthesized complexes were also carried out. The antibacterial potential and α-amylase and α-glucosidase inhibition studies of complexes were further investigated by molecular docking studies, which supported the experimental results. Significant α-amylase and α-glucosidase inhibition activities were shown by the synthesized complexes. S-1 and S-5 were found to be most inhibitors of α-amylase and α-glucosidase having IC50 42.50, 44.80 and 4.52 µg/mL, 4.80 µg/mL, respectively. The newly synthesized copper complexes showed overall better biological activities compared to each parent ligands used.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.