338
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamics of hERG channel: insights into understanding the binding of small molecules for detuning cardiotoxicity

, , , , , , , & show all
Pages 5996-6012 | Received 10 Aug 2020, Accepted 08 Jan 2021, Published online: 26 Jan 2021
 

Abstract

Evaluation of cardiotoxicity potential of new chemical entities (NCEs) has lately become one of the stringent filters in the drug discovery and development process. Cardiotoxicity is caused mainly by the inhibition of human ether-a-go-go related gene (hERG) channel protein. Inhibition of the hERG channel leads to a life-threatening condition known as cardiac arrhythmia. Knowledge of the structural behaviour of the hERG would aid greatly in the design of new drug molecules that do not interact with the protein and add to the safety index. In this study, a computational model for the active-state of hERG was developed. This model was equilibrated by performing the molecular dynamics simulations for 100 ns followed by clustering and selection of a representative structure based on the largest populated cluster. To study the changes in the protein structure on inhibition, three inhibitory ligands, namely, dofetilide, cisapride and terfenadine were docked, followed by molecular dynamics simulations of 200 ns for the apo and each ligand-bound structure. It was observed that docking and simulation studies of the hERG model exhibited noticeable conformational changes in the protein upon ligand-binding. A significant change in the kink of the S6-transmembrane helix was observed. Inter-chain distances between the crucial residues Y652 and F656 (present below the ion-selectivity filter), their side-chain orientation and hydrogen bonding indicated a probable collapse of the pore. These changes may infer the initiation in transition of hERG from an open to an inactive state. Hence, these findings would help in designing compounds devoid of hERG inhibition with reduced cardiotoxicity.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The computing infrastructure was provided by the Bioinformatics Resource and Applications Facility (BRAF) at Centre for Development of Advanced Computing, Pune, India. We thank Dr. Shreedhara Swamy for critically evaluating the manuscript.

Disclosure statement

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.