480
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

4-acetamido-3-nitrobenzoic acid - structural, quantum chemical studies, ADMET and molecular docking studies of SARS-CoV2

, , , , , , , , & show all
Pages 6656-6670 | Received 22 Sep 2020, Accepted 05 Feb 2021, Published online: 24 Feb 2021
 

Abstract

In December 2019, a new type of SARS corona virus emerged from China and caused a globally pandemic corona virus disease (COVID-19). This highly infectious virus has been named as SARS-CoV-2 by the International Committee of the Taxonomy of Viruses. It has severely affected a large population and economy worldwide. Globally various scientific communities have been involved in studying this newly emerged virus and is lifecycle. Multiple diverse studies are in progress to design novel therapeutic agents, in which understanding of interactions between the target and drug ligand is a significant key for this challenge. Structures of proteins involved in the life cycle of the virus have been revealed in RCSB PDB by researchers. In this study, we employed molecular docking study of 4-Acetamido-3-nitrobenzoic acid (ANBA) with corona virus proteins (spike protein, spike binding domain with ACE2 receptor and Main protease, RNA-dependent RNA polymerase). Single crystal X-ray analysis and density functional theory calculations were carried out for ANBA to explore the structural and chemical-reactive parameters. Intermolecular interactions which are involved in the ligand-protein binding process are validated by Hirshfeld surface analysis. To study the behaviour of ANBA in a living organism and to calculate the physicochemical parameters, ADMET analysis was done using SwissADME and Osiris data warrior tools. Further, Toxicity of ANBA was predicted using pkCSM online software. Based on the molecular docking analysis, we introduce here a potent drug molecule that binds to the COVID-19 proteins.

Communicated by Ramaswamy H. Sarma

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.