422
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Target2DeNovoDrug: a novel programmatic tool for in silico-deep learning based de novo drug design for any target of interest

, ORCID Icon, &
Pages 7511-7516 | Received 13 Dec 2020, Accepted 26 Feb 2021, Published online: 11 Mar 2021
 

Abstract

The on-going data-science and Artificial Intelligence (AI) revolution offer researchers a fresh set of tools to approach structure-based drug design problems in the computer-aided drug design space. A novel programmatic tool that incorporates in silico and deep learning based approaches for de novo drug design for any target of interest has been reported. Once the user specifies the target of interest in the form of a representative amino acid sequence or corresponding nucleotide sequence, the programmatic workflow of the tool generates compounds from the PubChem ligand library and novel SMILES of compounds not present in any ligand library but are likely to be active against the target. Following this, the tool performs a computationally efficient In-Silico modeling of the target and the newly generated compounds and stores the results of the protein-ligand interaction in the working folder of the user. Further, for the protein-ligand complex associated with the best protein-ligand interaction, the tool performs an automated Molecular Dynamics (MD) protocol and generates plots such as RMSD (Root Mean Square Deviation) which reveal the stability of the complex. A demonstrated use of the tool has been shown with the target signatures of Tumor Necrosis Factor-Alpha, an important therapeutic target in the case of anti-inflammatory treatment. The future scope of the tool involves, running the tool on a High-Performance Cluster for all known target signatures to generate data that will be useful to drive AI and Big data driven drug discovery. The code is hosted, maintained, and supported at the GitHub repository given in the link below https://github.com/bengeof/Target2DeNovoDrug

Communicated by Ramaswamy H. Sarma

Acknowledgement

The research was supported in part by PLGrid infrastructure.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.