416
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Network pharmacology based high throughput screening for identification of multi targeted anti-diabetic compound from traditionally used plants

, , , ORCID Icon &
Pages 8004-8017 | Received 29 May 2020, Accepted 15 Mar 2021, Published online: 26 Mar 2021
 

Abstract

The incurable Type 2 diabetes mellitus (T2DM) has now been considered a pandemic with only supportive care in existence. Due to the adverse effects of available anti-diabetic drugs, there arises a great urgency to develop new drug molecules. One of the alternatives that can be considered for the treatment of T2DM are natural compounds from traditionally used herbal medicine. The present study undertakes, an integrated multidisciplinary concept of Network Pharmacology to evaluate the efficacy of potent anti-diabetic compound from traditionally used anti-diabetic plants of north east India and followed by DFT analysis. In the course of the study, 22 plant species were selected on the basis of their use in traditional medicine for the treatment of T2DM by various ethnic groups of the north eastern region of India. Initially, a library of 1053 compounds derived from these plants was generated. This was followed by network preparation between compounds and targets based on the docking result. The compounds having the best network property were considered for DFT analysis. We have identified that auraptene, a monoterpene coumarin for its activity in the management of Type 2 diabetes mellitus and deciphered its unexplored probable mechanisms. Molecular dynamics simulation of the ligand–protein complexes also reveals the stable binding of auraptene with the target proteins namely, Protein Kinase C θ, Glucocorticoid receptor, 11-β hydroxysteroid dehydrogenase 1 and Aldose Reductase, all of which form uniform interactions throughout the MD simulation trajectory. Therefore, this finding could provide new insights for the development of a new anti-diabetic drug.

Communicated by Ramaswamy H. Sarma

Acknowledgements

BG thanks University Grant Commission, India, for the financial support as BSR fellowship. The authors appreciate the use of BIF facility, Centre for Biotechnology and Bioinformatics, Dibrugarh University and Head, Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.

Conflicts of interest

The authors have no conflicts of interest

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.