445
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Integrated support vector machine and pharmacophore based virtual screening driven identification of thiophene carboxamide scaffold containing compound as potential PARP1 inhibitor

, , , , &
Pages 8494-8507 | Received 10 Nov 2020, Accepted 31 Mar 2021, Published online: 05 May 2021
 

Abstract

Poly (ADP-ribose) polymerase-1 (PARP1) inhibition strategy for cancer treatment is gaining advantage particularly in patients having a mutation in BRCA1/BRCA2 gene. To date, four drugs have obtained FDA approval and some inhibitors are in clinical trials. To identify more potent PARP1 inhibitors extensive research is going on to enrich the library of PARP1 inhibitors with compounds belonging to different classes. We employed an integrated virtual screening approach to identify potential PARP1 inhibitors. The sequential support vector machine (SVM) and pharmacophore model based virtual screening was carried out on the Maybridge library. The obtained hits were docked in the binding site of the PARP1 catalytic domain and nine drug-like compounds showing good ADME properties and form critical molecular interactions with the binding site residues were considered for the in vitro PARP1 inhibition assay. MD simulations were performed to decipher the stability of the PARP1-ligand complexes. Hydrogen bond interactions were also probed for their stability during MD simulations. We have identified three compounds (BTB02767, GK01172, and KM09200) showing 50% inhibition of PARP1 enzyme activity at 25 μM. BTB02767 and KM09200 have phthalazinone scaffold, while GK01172 bears a thiophene carboxamide scaffold, which could be a new chemotype of PARP1 inhibitors. In conclusion, GK01172 may serve as an important compound for further development of PARP1 inhibitors containing thiophene carboxamide scaffold.

Communicated by Ramaswamy H. Sarma

Acknowledgements

MS acknowledges Department of Biotechnology, Govt. of India, for Senior Research fellowship. This manuscript is a CSIR-CDRI communication number 10231.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.