272
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

In vitro and in silico enzyme inhibition effects of some metal ions and compounds on glutathione S-transferase enzyme purified from Vaccinium arctostapylous L.

, , & ORCID Icon
Pages 11587-11593 | Received 07 May 2021, Accepted 22 Jul 2021, Published online: 05 Aug 2021
 

Abstract

Glutathione s-transferase (GST) is a class of enzymes that performs a wide array of biological functions. However, GST enzymes are most famously known for their roles in catalyzing the conjugation of reduced glutathione (GSH) to electrophilic centers on a wide variety of substrates to induce water-solubility to compounds as a protective antioxidant mechanism against toxic substances. In the present study, in vitro inhibition effects of coumarin, ascorbic acid, sodium sulfide, sodium azide, citric acid compounds, and Cd2+, Cu2+, Ni2+, Mg2+ metal ions against GST enzyme were determined. For this aim, the GST enzyme was purified from Vaccinium arctostapylous L. using the glutathione-agarose affinity chromatography and Sephadex G-100 gel filtration steps. The respective metals and chemical compounds were used at different concentrations for measuring their in vitro GST activity effects. The Ki values of these agents were determined as 0.450 ± 0.13, 15.05 ± 7.05, 0.009 ± 0.001, 0.022 ± 0.006, 0.120 ± 0.36, 0.150 ± 0.06, 0.223 ± 0.03, 0.002 ± 0.0003, and 0.136 ± 0.06 mM, respectively. Finally, the molecular docking interactions of the compounds with the GST target enzyme were evaluated using Autodock Tools-1.5.6. The effective molecular interactions of coumarin, citric acid, ascorbic acid, and sodium sulfide with GST target enzyme were found with their binding lowest energy affinities −4.62, −3.04, −2.53, and −1.67 kcal/mol, respectively.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that there are no conflicts of interest.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.