271
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of novel natural MurD ligase inhibitors as potential antimicrobial agents targeting Acinetobacter baumannii: In silico screening and biological evaluation

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 14051-14066 | Received 06 Jul 2021, Accepted 26 Oct 2021, Published online: 12 Nov 2021
 

Abstract

The increased multidrug resistance in Acinetobacter baumannii (A. baumannii) to the present-day known antibiotics has stimulated academic and industrial efforts globally for the development of novel antibacterial agents. Natural compounds as potential drug leads are gaining significant attention due to their less toxic and more tolerant nature. In the current study, the natural product-based compounds were explored as probable inhibitors of UDP-N-acetylmuramoyl-L-alanine:D-glutamate (MurD) ligase from A.baumannii (AbMurD) to provide a new class of drug leads. The prepared natural library of 3,16,714 compounds from ZINC database was screened into the active site of AbMurD using in silico high-throughput virtual screening which resulted in 100 compounds having high binding affinities. Further screening through flexible molecular docking yielded four potential compounds selected on the basis of estimated binding affinity (ΔG) and favorable protein-ligand interactions. MD simulation of these four compounds under physiological conditions and free binding energy calculations using MM/PBSA (molecular mechanics with Poisson- Boltzmann and surface area solvation) approach revealed three compounds ZINC08879777, ZINC30726863, and ZINC95486217 as potential binders of AbMurD. The calculated physicochemical and ADME properties of these compounds revealed that they can be exploited and modified to improve their binding affinity with the enzyme. Two compounds were purchased and tested against bacterial cell cultures of A. baumannii, Salmonella Typhi, and Staphylococcus aureus to determine their broad-spectrum antibacterial activity. The results suggest that the identified compounds can be exploited as potential herbal leads to target both Gram-positive and Gram-negative pathogens.

Communicated by Ramaswamy H. Sarma

Acknowledgements

PT thanks Indian Council of Medical Research, New Delhi for grant of Senior Research Fellowship.

Disclosure statement

No potential conflict of interest was reported by the authors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.