196
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Anchoring of Amyloid-β onto Polyunsaturated Phospholipid Membranes

ORCID Icon &
Pages 1098-1108 | Received 12 Sep 2021, Accepted 06 Dec 2021, Published online: 17 Dec 2021
 

Abstract

The interaction between the toxic amyloid-β and phospholipid membranes in the early stage of Alzheimer’s disease is complicated and depends on many factors. It was found that polyunsaturated fatty acids affect the incidence of Alzheimer’s disease. The number of double bonds in the phospholipid layer may play an important role in the molecular dynamic behavior of amyloid-β on cell membranes. In the present paper, the interactions between Aβ(25-35) and each of four phospholipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-stearoyl-2-arachidonoyl-sn-glycero-3-phosphocholine (SAPC), 1-stearoyl-2-docosahexaenooyl-sn-glycero-3-phosphocholine (SDPC), and 1,2-diarachidonoyl-sn-glycero-3-phosphocholine (DAPC), are investigated by using all-atom molecular dynamics simulation. It is interesting that, as the number of double bonds in the membrane increases, the peptide fragment prefers to stay in the surface region of the membrane rather than penetrates deeply into the membrane. With the increasing number of double bonds, the interaction between Aβ(25-35) and the membrane surface becomes stronger, especially for the interaction between the residue 28 (LYS28) in Aβ(25-35) and the phospholipids, anchoring Aβ(25-35) onto the membrane. The double bonds in phospholipid determine not only the adsorption of the peptide fragment Aβ(25-35) but also its conformation, which will influence further aggregation of Aβ in later stages.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by Key-Area Research and Development Program of Guangdong Province (2019B010940001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.