335
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

An in-silico analysis to identify structural, functional and regulatory role of SNPs in hMRE11

ORCID Icon & ORCID Icon
Pages 2160-2174 | Received 10 Nov 2021, Accepted 08 Jan 2022, Published online: 20 Jan 2022
 

ABSTRACT

Meiotic recombination 11 (MRE11) is a component of the tri-molecular MRE11-RAD50-NBS1 (MRN) complex, which functions as an exonuclease and endonuclease which is involved in identifying, signalling, protecting and repairing double-strand breaks in DNA (DSBs). Ataxia-telangiectasia-like disorder (ATLD) 1 and Nijmegen breakage syndrome (NBS)-like disorder are MRE11 associated diseases. In the present study, we used an integrated computational approach to identify the most deleterious SNPs and their structural and functional impact on human MRE11. Five of the 68 observed non-synonymous SNP (nsSNPs; I162T, S273C, W210C, D311Y and R364L) should be worked on due to their strong possible pathogenicity and the risk of changing protein properties. All the nsSNPs were highly conserved and decrease the protein stability located in the MRE11 nuclease and MRE11 DNA binding presumed domain. R364L and I162T were predicted to be involved in post-translational modification (PTM) sites. Furthermore, we also analysed the regulatory effect of noncoding SNPs on MRE11 gene regulation in which 6 SNPs were found to affect gene regulation. All six noncoding SNPs predicted chromatin interactive site whereas only one SNP was noted its association with miRNA binding site which disrupts 5 miRNA conserved site. These findings help future studies to get more insights into the role of these variants in the alteration of the MRE11 function.

Communicated by Ramaswamy H. Sarma

Graphical abstract

Disclosure statement

The authors declare no competing interest.

Authors contribution

B.T. and F.D. designed the computational framework and analysed the data. B.T. carried out the implementation and wrote the manuscript with input from both authors. F.D. reviewed the data and oversaw overall direction and planning to shape the research, analysis, and manuscript. Both authors read and approved the final manuscript.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.