184
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 2355-2367 | Received 12 Oct 2021, Accepted 12 Jan 2022, Published online: 22 Jan 2022
 

Abstract

Main protease (Mpro) is a critical enzyme in the life cycle of severe acute respiratory syndrome Coronavirus −2 (SARS-CoV-2). Due to its essential role in the maturation of the polyproteins, the necessity to inhibit Mpro is one of the essential means to prevent the outbreak of COVID-19. In this context, this study was conducted on the natural compounds of medicinal plants that are commonly available in the Middle East to find out the most potent one to inhibit Mpro with the best bioavailability and druglikeness properties. A total of 3392 compounds of sixty-six medicinal plants were retrieved from PubChem database and docked against Mpro. Thirty compounds with the highest docking scores with Mpro were chosen for further virtual screening. Variable druglikeness and toxicity potentials of these compounds were evaluated using SwissADME and Protox servers respectively. Out of these virtually screened compounds, artecanin was predicted to exhibit the most favourable druglikeness potentials, accompanied by no predicted hepatoxicity, carcinogenicity, mutagenicity, and cytotoxicity. Molecular dynamics (MD) simulations showed that Mpro-artecanin complex exhibited comparable stability with that observed in the ligand-free Mpro. This study revealed for the first time that artecanin from Laurus nobilis provided a novel static and dynamic inhibition for Mpro with excellent safety, oral bioavailability, and pharmacokinetic profile. This study suggested the ability of artecanin to be used as a potential natural inhibitor that can be used to block or at least counteract the SARS-CoV-2 invasion.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors declared that this research received no external funding from any agency or institution.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.