261
Views
0
CrossRef citations to date
0
Altmetric
Research articles

A sequence space search engine for computational protein design to modulate molecular functionality

, ORCID Icon, & ORCID Icon
Pages 2937-2946 | Received 29 Jul 2021, Accepted 09 Feb 2022, Published online: 26 Feb 2022
 

Abstract

De-novo protein design explores the untapped sequence space that is otherwise less discovered during the evolutionary process. This necessitates an efficient sequence space search engine for effective convergence in computational protein design. We propose a greedy simulated annealing-based Monte-Carlo parallel search algorithm for better sequence-structure compatibility probing in protein design. The guidance provided by the evolutionary profile, the greedy approach, and the cooling schedule adopted in the Monte Carlo simulation ensures sufficient exploration and exploitation of the search space leading to faster convergence. On evaluating the proposed algorithm, we find that a dataset of 76 target scaffolds report an average root-mean-square-deviation (RMSD) of 1.07 Å and an average TM-Score of 0.93 with the modeled designed protein sequences. High sequence recapitulation of 48.7% (59.4%) observed in the design sequences for all (hydrophobic) solvent-inaccessible residues again establish the goodness of the proposed algorithm. A high (93.4%) intra-group recapitulation of hydrophobic residues in the solvent-inaccessible region indicates that the proposed protein design algorithm preserves the core residues in the protein and provides alternative residue combinations in the solvent-accessible regions of the target protein. Furthermore, a COFACTOR-based protein functional analysis shows that the design sequences exhibit altered molecular functionality and introduce new molecular functions compared to the target scaffolds.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Data and software availability

The complete code and executable of the proposed algorithm can be accessed at http://cse.iitkgp.ac.in/∼pralay/resources/SADIE/. The data and executable code is free for public use and there is no login requirement.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.