531
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Three-dimensional modeling of streptomycin binding single-stranded DNA for aptamer-based biosensors, a molecular dynamics simulation approach

Pages 3430-3439 | Received 11 Oct 2021, Accepted 03 Mar 2022, Published online: 17 Mar 2022
 

Abstract

Streptomycin (STR) an aminoglycoside antibiotic which is used against bacteria in human and animal infection, have serious side effects on different parts of human body. Therefore, there is a crucial need to detect trace amount of it in serum and food products. Aptamers are oligonucleotides or peptides, which bind their targets with high affinity and specificity. These properties make aptamers as suitable candidates for biosensing applications. A 79-mer ss-DNA aptamer was applied for the detection of small amount of STR in various aptasensors. But there is no structural information on the STR-binding aptamer and molecular details underlying the aptamer-STR binding remain unexplored. In this study we provided a 3D-structural model for 79-mer ss-DNA aptamer from the sequence. Using docking program and molecular dynamics (MD) simulation we predicted the binding pocket of ss-DNA aptamer. Our results show STR streptose ring is buried within the groove of DNA model and capped by non Watson-Crick bases. STR interacts with aptamer through forming stable hydrogen bonds. Our computational findings are in fair agreement with experimental results. With the atomic structural details, we gained new insight into the Apt-STR binding interaction that can help to further optimize aptamer efficiency in biosensing applications.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This study financial support was provided by Ilam University.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.