546
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

In silico homology modeling, docking and sequence analysis of some bacterial laccases to unravel enzymatic specificity towards lignin biodegradation

, ORCID Icon, & ORCID Icon
Pages 5757-5775 | Received 31 Mar 2022, Accepted 26 Jun 2022, Published online: 15 Jul 2022
 

Abstract

Laccase is a delignifying enzyme that belongs to the oxidoreductase family, and it has long been investigated as a pretreatment agent in biofuel production. In this study, amino acid sequences of five bacterial laccases from Bifidobacterium breve, Klebsiella pneumonia, Pseudodesulfovibrio hydrargyri, Pseudomonas aeruginosa and Veillonella rodentium have been retrieved from UniProtKB for sequence alignment, phylogenetic analysis using MEGA 7.0 and 3 D structure prediction by homology modeling in SWISS-MODEL. Multiple sequence alignment between all the bacterial laccase sequences revealed a similar structural fold, although the overall protein sequence varied greatly with the substrate binding sites. Further molecular docking in AutoDock Vina and MD stimulation (MDS) in GROMACS for those modelled enzymes were performed considering both apo and ligand bound structures considering both apo and its ligand bound form. Investigation of molecular interaction utilizing docking of five bacterial laccases with three substrates (ABTS, DMP and Guaiacol) revealed that ABTS with K. pneumoniae laccase had the highest binding energy of −7.00 kcal/mol. In the current MDS investigation, bacterial laccases demonstrated greater binding and substrate energy in the ligand bound complex than in the apo form for ABTS, DMP and Guaiacol. In most cases of bacterial laccase, MDS revealed that DMP bound complex was more stable within an average RMSD value lower than 0.5 nm throughout 100 ns time scale. Thus, in silico studies undertaken in this work will be useful in determining the stable enzyme-substrate complex which further might improve the enzymatic catalysis of bacterial laccases for lignin breakdown and biofuel generation.

Acknowledgements

The authors are grateful to the Department of Biotechnology, Maharaja Sriram Chandra BhanjaDeo University, Baripada, Odisha for providing facilities to conduct this work.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.