111
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic effect of conformational changes in phosphoglycerate kinase 1 product release

, , , &
Pages 10059-10069 | Received 11 Aug 2022, Accepted 23 Nov 2022, Published online: 01 Dec 2022
 

Abstract

In the glycolysis pathway, phosphoglycerate kinase 1 (PGK1) transfers one phosphoryl-group from 1,3-diphosphoglycerate (1,3BPG) to ADP to product 3-phosphoglycerate (3PG) and ATP. The catalytic process is accompanied with the conversion between the open conformation and the closed conformation of PGK1. However, the dynamic collaboration mechanism between the PGK1 conformation transition and the products releasing process remains poorly understood. Here using molecular dynamics simulations combined with molecular mechanics generalized born surface area (MM/GBSA) analysis, we demonstrated that PGK1 in the closed conformation first releases the product ATP to reach a semi-open conformation, and releases the product 3PG to achieve the full open conformation, which could accept new substrates ADP and 1,3BPG for the next cycle. It is noteworthy that the phosphorylation of PGK1 at T243 causes the loop region (residues L248-E260) flip outside the protein, and the phosphorylation of Y324 leads PGK1 become looser. Both modifications cause the exposure of the ADP/ATP binding site, which was beneficial for the substrates/products binding/releasing of PGK1. In addition, the other post translational modifications (PTMs) were also able to regulate the ligands binding/releasing with different effects. Our results revealed the dynamic cooperative molecular mechanism of PGK1 conformational transition with products releasing, as well as the influence of PTMs, which would contribute to the understanding of PGK1 substrates/products conversion process and the development of small molecule drugs targeting PGK1.

Communicated by Ramaswamy H. Sarma.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

This work was supported by the National Natural Science Foundation of China Grant (21933010 (G.L.), and 21907094 (H.C.)).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.