165
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Robust anti-inflammatory activity of genistein against neutrophil elastase: a microsecond molecular dynamics simulation study

&
Pages 11612-11628 | Received 14 Sep 2022, Accepted 26 Dec 2022, Published online: 27 Jan 2023
 

Abstract

Human Neutrophil Elastase (HNE) is one of the major causes of tissue destruction in numerous chronic and inflammatory disorders and has been reported as a therapeutic target for inflammatory diseases. Overexpression of this enzyme plays a critical role in the pathogenesis of rheumatoid arthritis (RA). The focus of this study is to identify potent natural inhibitors that could target the active site of the HNE through the use of computational methods. The molecular structure of small molecules was retrieved from several natural compound databases. This was followed by structure-based virtual screening, molecular docking, ADMET property predictions and molecular dynamic simulation studies to screen potential HNE inhibitors. In total, 1881 natural compounds were extracted and subjected to molecular docking studies, and 10 compounds were found to have good interactions, exhibiting the best docking scores. Genistein showed higher binding efficacy (-10.28 Kcal/mol) to HNE in comparison to other natural compounds. The conformational stability of the docked complex of the ELANE gene (HNE) with genistein was assessed using 1-microsecond molecular dynamic simulation (MDs), which reliably revealed the unique stereochemical alteration of the complex, indicating its conformational stability and flexibility. Alterations in the enzyme structure upon complex formation were further characterized through clustering analysis and linear interaction energy (LIE) calculation. The outcomes of this research propose novel potential candidates against target HNE.

Communicated by Ramaswamy H. Sarma

Acknowledgements

The authors are grateful to the management of the Vellore Institute of Technology for providing the facilities to carry out this research investigation.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.