218
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Novel phytochemical inhibitors targeting monkeypox virus thymidine and serine/threonine kinase: integrating computational modeling and molecular dynamics simulation

ORCID Icon, , , , , , ORCID Icon & ORCID Icon show all
Pages 13679-13695 | Received 25 Nov 2022, Accepted 06 Feb 2023, Published online: 28 Feb 2023
 

Abstract

Due to the rapid spread of the monkeypox virus and rise in the number of cases, there is an urgent need for the development of effective drugs against the infection. Serine/threonine protein kinase (Ser/Thr kinase) and Thymidine Kinase (TK) plays an imperative role in the replication and virulence of monkeypox virus and thus is deliberated as an attractive target in anti-viral drug development. In the present study, the 3D structure of monkeypox virus Ser/Thr kinase and TK was generated via molecular modeling techniques and performed their thorough structural analysis. We have screened potent anti-viral phytochemicals from the literature to inhibit Ser/Thr kinase and TK. As part of the initial screening, the physicochemical properties of the compounds were examined. Following this, a structure-based molecular docking technique was used to select compounds based on their binding affinity towards Ser/Thr kinase and TK. In order to find more potent hits against Ser/Thr kinase and TK, further examinations of ADMET properties, PAINS patterns and blood–brain barrier permeability were conducted. As a result, thalimonine and galanthamine were identified from the screening process bearing appreciable binding affinity towards Ser/Thr kinase and TK respectively, which showed a worthy set of drug-like properties. In the end, molecular dynamics simulations were performed for 100 ns, which showed decent stability of both protein–ligand complex throughout the trajectory. Due to the possibility that both monkeypox virus target proteins may be inhibited by thalimonine and galanthamine, our study highlights the need to investigate in vivo effects of thalimonine and galanthamine.

Communicated by Ramaswamy H. Sarma

Acknowledgement

This research has been funded by the Scientific Research Deanship at University of Hail - Saudi Arabia through a project number (MDR-22001).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability statement

All data generated or analyzed during this study are included in this article.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.