174
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

An in silico quest for next-generation antimalarial drugs by targeting Plasmodium falciparum hexose transporter protein: a multi-pronged approach

ORCID Icon, & ORCID Icon
Pages 14450-14459 | Received 19 Dec 2022, Accepted 12 Feb 2023, Published online: 22 Feb 2023
 

Abstract

The emergence of artemisinin resistance by malaria parasites is a major challenge in the fight against malaria, thus posing serious threat to the public health across the world. To tackle this, antimalarial drugs with unconventional mechanisms are therefore urgently needed. It has been reported that selective starvation of Plasmodium falciparum by blocking the function of hexose transporter 1 (PfHT1) protein, the only known transporter for glucose uptake in P. falciparum, could provide an alternative approach to fight the drug resistant malaria parasites. In this study, three high affinity molecules (BBB_25784317, BBB_26580136 and BBB_26580144) that have shown the best docked conformation and least binding energy with PfHT1 were shortlisted. The docking energy of BBB_25784317, BBB_26580136 and BBB_26580144 with PfHT1 were −12.5, −12.1 and −12.0 kcal/mol, respectively. In the follow up simulation studies, the protein 3D structure maintains considerable stability in the presence of the compounds. It was also observed that the compounds produced a number of hydrophilic and hydrophobic interactions with the protein allosteric site residues. This demonstrates strong intermolecular interaction guided by close distance hydrogen bonds of compounds with Ser45, Asn48, Thr49, Asn52, Ser317, Asn318, Ile330 and Ser334. Revalidation of compounds binding affinity was conducted by more appropriate simulation based binding free energy techniques (MM-GB/PBSA and WaterSwap). Additionally, entropy assay was performed that further strengthen the predictions. In silico pharmacokinetics confirmed that the compounds would be suitable candidates for oral delivery due to their high gastrointestinal absorption and less toxic reaction. Overall, the predicted compounds are promising and could be further sought as antimalarial leads and subjected to thorough experimental investigations.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study is supported via funding from Prince Sattam Bin Abdulaziz University project number (PSAU/2023/R/1444).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.