210
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Computer aided drug discovery (CADD) of a thieno[2,3-d]pyrimidine derivative as a new EGFR inhibitor targeting the ribose pocket

, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 2369-2391 | Received 14 Jan 2023, Accepted 14 Apr 2023, Published online: 02 May 2023
 

Abstract

Depending on the pharmacophoric characteristics of EGFR inhibitors, a new thieno[2,3-d]pyrimidine derivative has been developed. Firstly, the potential inhibitory effect of the designed compound against EGFR has been proven by docking experiments that showed correct binding modes and excellent binding energies of −98.44 and −88.00 kcal/mol, against EGFR wild-type and mutant type, respectively. Furthermore, MD simulations studies confirmed the precise energetic, conformational, and dynamic alterations that occurred after binding to EGFR. The correct binding was also confirmed by essential dynamics studies. To further investigate the general drug-like properties of the developed candidate, in silico ADME and toxicity studies have also been carried out. The thieno[2,3-d]pyrimidine derivative was synthesized following the earlier promising findings. Fascinatingly, the synthesized compound (4) showed promising inhibitory effects against EGFRWT and EGFRT790M with IC50 values of 25.8 and 182.3 nM, respectively. Also, it exhibited anticancer potentialities against A549 and MCF-7cell lines with IC50 values of 13.06 and 20.13 µM, respectively. Interestingly, these strong activities were combined with selectivity indices of 2.8 and 1.8 against the two cancer cell lines, respectively. Further investigations indicated the ability of compound 4 to arrest the cancer cells’ growth at the G2/M phase and to increase early and late apoptosis percentages from 2.52% and 2.80 to 17.99% and 16.72%, respectively. Additionally, it was observed that compound 4 markedly increased the levels of caspase-3 and caspase-9 by 4 and 3-fold compared to the control cells. Moreover, it up-regulated the level of BAX by 3-fold and down-regulated the level of Bcl-2 by 3-fold affording a BAX/Bcl-2 ratio of 9.

Communicated by Ramaswamy H. Sarma

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R116), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The authors extend their appreciation to the Research Center at AlMaarefa University for funding this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.