83
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Computational study of inclusion complexes of V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin

&
Pages 2681-2697 | Received 06 Mar 2023, Accepted 19 Apr 2023, Published online: 05 May 2023
 

Abstract

The effective detoxification of organophosphate (OP) nerve agents (OPNAs) is a challenging issue for scientists. The host–guest inclusion complexes of five V-type nerve agents (VE, VG, VM, VR and VX) with β-cyclodextrin (β-CD) have been studied by combining quantum mechanical (QM) calculations and molecular dynamics (MD) simulations. The frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) have been analyzed to describe the reactivity parameters and electronic properties. The obtained results clearly reveal that stable complexes were formed in both vacuum and water media, and the complexation process occurred spontaneously. To understand non-covalent interactions, natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) have been used. IR and Raman spectra have been calculated to confirm the formation of complexes and also thermodynamic parameters have been investigated. It was demonstrated that in addition to van der Waals interactions, the presence of intermolecular hydrogen bonds enhances the stability of these complexes. Furthermore, MD simulations were carried out to get a better insight into the inclusion process of the above complexes. From MD simulations, all simulated systems reached full equilibration at 1000 ps and the V-agent molecules consistently remained in the β-CD cavity and only had vibrational motion inside the cavity. More importantly, MD simulations support the findings of QM calculations and indicate that hydrogen bonding can help the leaving groups of V-agents to be released and them to be hydrolyzed. All results have shown that the VR agent formed the most stable complex with β-CD molecule than that of other agents.

Communicated by Ramaswamy H. Sarma

Disclosure statement

The authors declare that they have no conflict of interest.

Additional information

Funding

The University of Sistan and Baluchestan supported this work.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.